Periods of rational maps modulo primes

نویسندگان

  • Robert L. Benedetto
  • Dragos Ghioca
  • Benjamin Hutz
  • Pär Kurlberg
  • Thomas Scanlon
  • Thomas J. Tucker
چکیده

Let K be a number field, let φ ∈ K (t) be a rational map of degree at least 2, and let α, β ∈ K . We show that if α is not in the forward orbit of β, then there is a positive proportion of primes p of K such that α mod p is not in the forward orbit of β mod p. Moreover, we show that a similar result holds for several maps and several points. We also present heuristic and numerical evidence that a higher dimensional analog of this result is unlikely to be true if we replace α by a hypersurface, such as the ramification locus of a morphism φ : Pn → Pn . R. L. Benedetto Department of Mathematics, Amherst College, Amherst, MA 01002, USA e-mail: [email protected] D. Ghioca Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada e-mail: [email protected] B. Hutz Ph.D. Program in Mathematics, Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016-4309, USA e-mail: [email protected] P. Kurlberg Department of Mathematics, KTH, 100 44 Stockholm, Sweden e-mail: [email protected] T. Scanlon Mathematics Department, University of California Berkeley, Evans Hall, Berkeley, CA 94720-3840, USA e-mail: [email protected] T. J. Tucker (B) Department of Mathematics, University of Rochester, Rochester, NY 14627, USA e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterations of Integer Polynomial Maps Modulo Primes

In this elementary note we discuss some questions related to the behavior of iterations of polynomial maps with integer coefficients modulo primes. In particular, we introduce three examples of such maps that have interesting dynamical properties. Several open questions are stated and discussed.

متن کامل

The use of bad primes in rational reconstruction

A standard method for finding a rational number from its values modulo a collection of primes is to determine its value modulo the product of the primes via Chinese remaindering, and then use Farey sequences for rational reconstruction. Successively enlarging the set of primes if needed, this method is guaranteed to work if we restrict ourselves to “good” primes. Depending on the particular app...

متن کامل

An Introduction to Motivic Zeta Functions of Motives

It oftens occurs that Taylor coefficients of (dimensionally regularized) Feynman amplitudes I with rational parameters, expanded at an integral dimension D = D0, are not only periods (Belkale, Brosnan, Bogner, Weinzierl) but actually multiple zeta values (Broadhurst, Kreimer). In order to determine, at least heuristically, whether this is the case in concrete instances, the philosophy of motive...

متن کامل

Evil Primes and Superspecial Moduli

For a quartic primitive CM field K, we say that a rational prime p is evil if at least one of the abelian varieties with CM by K reduces modulo a prime ideal p|p to a product of supersingular elliptic curves with the product polarization. We call such primes evil primes for K. In [GL], we showed that for fixed K, such primes are bounded by a quantity related to the discriminant of the field K. ...

متن کامل

Automatic congruences for diagonals of rational functions

In this paper we use the framework of automatic sequences to study combinatorial sequences modulo prime powers. Given a sequence whose generating function is the diagonal of a rational power series, we provide a method, based on work of Denef and Lipshitz, for computing a finite automaton for the sequence modulo p, for all but finitely many primes p. This method gives completely automatic proof...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011